A new E6/P63 pathway, together with a strong E7/E2F mitotic pathway, modulates the transcriptome in cervical cancer cells.
نویسندگان
چکیده
Cervical carcinoma is associated with certain types of human papillomaviruses expressing the E6 and E7 oncogenes, which are involved in carcinogenesis through their interactions with the p53 and pRB pathways, respectively. A critical event on the path to malignant transformation is often manifested by the loss of expression of the viral E2 transcription factor due to the integration into the host genome of the viral DNA. Using microarrays, we have previously shown that reintroduction of a functional E2 in the HeLa cervical carcinoma cell line activates a cluster of p53 target genes while at the same time severely repressing a group of E2F target genes. In the present study, using new high-density microarrays containing more than 22,000 human cDNA sequences, we identified a novel p63 pathway among E2-activated genes and 38 new mitotic genes repressed by E2. We then sought to determine the pathways through which these genes were modulated and used an approach that relies on small interfering RNA to demonstrate that the p63 target genes were activated through silencing of the E6/E6AP pathway while the mitotic genes were mainly repressed through E7 silencing. Importantly, a subset of the mitotic genes was shown to be significantly induced in biopsies of stage IV cervical cancers, which points to a prominent E7 pathway in cervical carcinoma.
منابع مشابه
A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis.
More than 90% of cervical carcinomas are associated with human papillomavirus (HPV) infection. The two viral oncogenes E6 and E7 play a major role in transforming the cells by disrupting p53- and pRb-dependent cell cycle checkpoints. A hallmark of HPV-associated cervical carcinoma is loss of the expression of the viral E2 protein, often by disruption of E2-encoding gene. We showed previously th...
متن کاملThe Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation
Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. ...
متن کاملDeveloping Michigan Cancer Foundation 7 Cells with Stable Expression of E7 Gene of Human Papillomavirus Type 16
Background: Human papillomavirus (HPV) is responsible for the development of cervical neoplasia. Infection with human papillomavirus type 16 (HPV-16) is a major risk factor for the development of cervical cancer. The virus encodes three oncoproteins (E5, E6 and E7), of which, the E7 oncoprotein is the major protein involved in cell immortalization and transformation o...
متن کاملEffect of HPV E6/E7 siRNA with Chemotherapeutic Agents on the Regulation of TP53/E2F Dynamic Behavior for Cell Fate Decisions
Toxicity and resistance remain major challenges for advanced or recurrent cervical cancer therapies, as treatment requires high doses of chemotherapeutic agents. Restoration of TP53 and hypophosphorylated-retinoblastoma (pRB) proteins by human papillomavirus (HPV) E6/E7 siRNA sensitizes HPV-positive cervical cancer cells toward chemotherapeutic agents. Here, we investigated the therapeutic effe...
متن کاملNotch1 can contribute to viral-induced transformation of primary human keratinocytes.
The human papillomavirus (HPV) is the most significant causative agent in the development of cervical cancer. Despite its presence in almost all cervical cancers, HPV by itself is unable to transform a normal cell to a cancerous one. Instead, additional cellular mutations are required to supplement the HPV oncoproteins E6 and E7. Activation of the Notch1 signaling pathway has been proposed as o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 81 17 شماره
صفحات -
تاریخ انتشار 2007